Modeling and Verifying Agent-based
Communities of Web Services

Wei Wan'!, Jamal Bentahar?, and Abdessamad Ben Hamza?

!Department of Electrical and Computer Engineering, Concordia University
2Concordia Institute for Information Systems Engineering, Concordia University
w_wan@encs.concordia.ca, {bentahar,hamza}@ciise.concordia.ca,

Abstract. Communities of web services are virtual spaces that can dy-
namically gather different web services having complementary function-
alities in order to provide composite services with high quality. In the last
two years, some approaches have been proposed using multi-agent sys-
tems to organize communities of web services. This trend has increased
the flexibility but also the system complexity. These systems are hard
to check by simply inspecting their models. Therefore, model checking,
which is a well-established formal technique for verifying communica-
tion and cooperation in multi-agent systems, is used in this paper to
verify the system correctness in terms of satisfying desirable properties.
The approach presented in the paper is used to verify these communities
modeled in UML activity diagram. We first translate the activity dia-
gram into an interpreted system model using predefined transformation
rules. Specifications are expressed as formulae in a logic extending the
Computation Tree Logic CT L™ with agent commitments needed for their
communication. Then, both the model and formulae are used as inputs
for the multi-agent symbolic model checker MCMAS. We illustrate our
approach with a short case study, in which we show how communication
properties of simulated communities are verified.
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1 Introduction

As the internet becomes more and more prevalent, communities of web ser-
vices, which are larger scale virtual network societies integrated web services,
attract more and more attention [1,2]. In the last two years, these communities
started to move toward ”agent-like” models that include largely independent
agent-based web services. However, this merging results in more complex sys-
tems where functional and non-functional properties cannot be easily checked
by simply inspecting the system model. Since it is very expensive to modify
communities of web services that have been deployed, it is desirable to have
methods available for the verification of communities’ properties earlier in the
design phases. Model checking [5] is a suitable solution in this case because it
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is a formal technique allowing the automatic verification of the systems design
against specific properties that capture the requirements.

In nineties, Researchers have put forward in [7] an application of model check-
ing within the context of the logic of knowledge. After that, several approaches
have been proposed for model checking multi-agent systems. In [16], Wooldridge
et al. have proposed an imperative programming language, MABLE to specify
multi-agent systems along with a Belief-Desire-Intention (BDI) logic to express
the properties. SPIN, an automata-based model checker has been used to verify if
the specified MABLE model satisfies the expressed properties. Another method
based on the SPIN model checker has been developed in [3] using AgentSpeak(F)
Language, a BDI logic-based programming language [12]. As a model grows,
automata-based model checking can face a serious state explosion problem. One
technique to avoid this problem is symbolic model checking based on Ordered
Binary Decision Diagrams (OBDDs). NuSMV [4], MCK [14] and MCMAS [9]
are examples of model checkers using this approach. NuSMV supports both
Linear Temporal Logic (LTL) and branching time logic (CTL). MCK works
on a particular input model of synchronous interpreted systems of knowledge.
The specification formulae in MCK can be either LT L or C'T'L augmented with
knowledge. Similar to MCK, in MCMAS, models are described into a modular
language called Interpreted Systems Programming Language (ISPL). Although
the framework of interpreted systems is powerful and popular in multi-agent
systems, it cannot be directly used by designers to describe business and indus-
trial systems. For this type of applications, it deems appropriate to use suitable
modeling languages such as UML (Unified Modeling Language).

The motivation of this paper is to build the connection among UML, agent-
based communities properties, and symbolic model checking so that we can use
exist model checker, like MCMAS, to check these communities’ models directly.
We propose an approach based upon symbolic model checking to verify com-
munities presented by UML activity diagram, which shows the activities and
flow of control for the model [15]. We formalize agent-based communities of
web services with the execution semantics of UML activity diagram. We adopt
CTL*“4 proposed in [2] for communicating agents as the logic for specifying
the properties to be checked. We use the MCMAS model checker in our sym-
bolic approach for the verification of communities of web services. There are
two reasons behind choosing MCMAS: 1) unlike NuSMV and MCK, MCMAS
supports directly agent specifications we need for agent-based communities of
web services; and 2) in terms of the adopted specification language, MCMAS is
the closest to CTL*“4. We experiment this approach with an implementation to
verify the PN AW S protocol (Persuasion/Negotiation protocol for Agent-based
Web Services) [2]. PNAWS is a communication protocol used by agent-based
web services to negotiate joining a given community.

The structure of this paper is as follows: In Section 2, we present an overview
of our model checking approach and explain how we formalize the activity di-
agram to represent communicating agent-based web services. The specification
language CTL*“4 logic for communicating agents will be also discussed. In Sec-
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tion 3, we define the rules for mapping and transforming formalized activity
diagram model and properties specification into the Interpreted Systems Pro-
gramming Language (ISPL), which is used as the input language of the MC-
MAS model checker. Section 4 presents the experimental results of verifying the
PNAW S protocol with MCMAS. Finally, we summarize our work and discuss
future works in Section 5.

2  Modeling / Specifying Communities of Web Services

2.1 Approach Overview

Model checking is a three-step process [5]: modeling, specification, and verifica-
tion. We use UML activity diagrams to model the system, CTL*“4 as specifica-
tion language to state the properties that the design must satisfy, and symbolic
model checking with OBDDs for verification.

Fig.1 illustrates our general approach. It starts with modeling communities
of web services as activity diagrams and specifying the properties as formal re-
quirements. The modeled system and formalized specifications are read as inputs
by our automatic transformation engine, which uses transformation definitions
(rules) to map the input model and specifications (properties) into the ISPL
model and formulae. Finally, the MCMAS model checker verifies the ISPL model
against the formulae. Witnesses are generated if the formulae are true (i.e. the
properties are satisfied); otherwise, counterexamples are generated.

Modeling

|
’ |
P definition for the model | !
Activity Diagram ! |
1
Transformation
Engine

! Writes MCMAS Model

Checker

ISPL Model | Verifies
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Fig. 1. Structure of model checking communities of web services (CWSs)

Before using this approach, an issue should be resolved: the activity diagram
modeling the community of web services can have an infinite state space, while
symbolic model checking requires the state space to be finite. To convert activity
diagram from infinite to finite state space, Eshuis and Wieringa have proposed in
[6] some techniques to remove unbounded states, which do not have a maximum
number of their active instances. We adopt this method in our approach.

2.2 UML Activity Diagrams

A UML activity diagram shows the activities and flow of control for the model
[15]. Activity states are represented with rounded rectangles, a black solid circle
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stands for an initial node and a black in-out circle is a final node. A diamond
represents a decision or merging state. A bar shows an activity that splits a flow
into several concurrent flows or an activity that synchronizes several concurrent
flows and joins them into one single flow.

Fig.2 shows an activity diagram for a concrete example of PN AW S protocol
model [2]. According to this protocol, agent-based web services interact with
each other in a negotiation setting. Our example diagram presents the Master
web service (MWS) agent’s behavior of inviting a Slave web service to join its
community and the Slave web service (SWS) agent’s behavior of negotiating the
joining contract. The MWS, which represents the community, starts the session
by sending the invitation. The SWS can either accept or refuse. If the SWS
accepts, the session will end with successful invitation. Otherwise, the MWS
will defend the invitation proposal with negotiation arguments. Then, if the
defence is not definitely accepted or refused, the MWS and SWS will enter a
negotiation process consisting of a sequence of challenge/justification and attack
until they achieve an agreement, refusal or timeout.

Accept/Refuse/Timeout

Accept

Attack resceived
Justify Received

Challenge Received

Refuse.  Refusal ReceweHDEfence Se"‘]
Session Created

Start

Fig. 2. Activity diagram of PN AW S protocol

The activity diagram used in this paper describes the behavior of agents that
interact with each other. These agents perform certain actions according to the
protocol they use, which is a set of rules describing the allowed communicative
acts in different situations. An agent has beliefs, goals, and intentions that are
stored in a database accessible to the agent but external to the activity diagram.
Activity states represent activities preformed by certain agents, such as accepting
or refusing a proposal. A transition from one state to another is trigged by a
set of internal (by agent’s own actions) or external (by other agents’ actions)

activities. We use 2% to represent the transition relation.

In order to use activity diagrams in our symbolic model checking approach,
we need to define their formal semantics. Because they are associated to agent
communication protocols in our approach, a suitable solution would be to define
a formal agent hypergraph from the notion of activity hypergraph used to model
check activity diagrams [6]. The idea behind an agent hypergraph is to capture
the execution structure of the communication protocol among agent-based web
services. We use CTL*4 model to represent the communicative acts agents use
when communicating. These communicative acts are defined as action performed
on public commitments the agents make. For example, by inviting a Slave web
service to join a community, the Master creates a new public commitment and
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accepting this invitation means accepting the content of this public commitment.
An agent hypergraph is defined as a tuple: < S, sg, Ag, Act, ﬂ, Vpc >, where:

— S is a set of all possible states in the system. There are three kinds of states
in this set: one initial state, at least one final state, and none or several
activity states which are not initial state or final states.

— 8¢ is the initial state.

— Ag is a non-empty set of agents.

— Act is a set of allowed actions agents can perform.

A . o . . Acty,
— —Ct@ S x Ag x S is the transition relation. We write s;, Agy, Act 55 to

express how the agent Ag, evolves from one state s; to another state s; by
performing the action Acty.

— Vpe : S — 2% is a function associating to each state the set of public com-
mitments made in this state, where C' is the set of all public commitments.

2.3 Logic for Specification - CTL*¢4

Syntax We use CTL*“4 [2] to specify the properties our agent-based commu-
nities of web services should satisfy. CTL*“4 extends CTL* [5] by adding public
commitments and action formulae. This logic supports two kinds of formulae:
state formulae S evaluated over states and path formulae P evaluated over paths
that are infinite sequences of states. We use p, p1, ps, ... to range over the set of
atomic propositions @, and ¢1, ¢, ... to range over path formulae. The syntax
of this logic is given in Table 1.

Table 1. The Syntax of CTL*“4 Logic
S = p|=S|S V S|AP|EP|PC(Ag1, Aga,t, P)
P u= S|PV P|XtP|X~PIPUPIPUP|P - P
|Acti(Agy, PC(Agi, Aga,t, P))

The temporal operator X T ¢; means in the next state ¢, is true, X ¢ means
in the previous state ¢, is true, ¢;U "¢ means ¢, is true utile ¢o becomes true
and ¢1U~ ¢2 means ¢ is rue since ¢ was true. A stands for the universal path
quantifier and E stands for the existential path quantifier. The formula ¢; .. ¢2
means that ¢; is an argument for ¢, and is read as: ¢; so ¢o. This operator
introduces argumentation as a logical relation between path formulae.

The formula PC(Agy, Ags,t,$1) is the public commitment made by agent
Ag; at the moment ¢ towards agent Ags saying that the path formula ¢, is true.
Acty(Agn, PC(Ag1, Aga,t, ¢1)) means that agent Ag, (n € {1,2}) performs an
action Acty on the commitment made by Ag; towards Ago. The set of actions
performed on commitments may change to suit different systems. For commu-
nities of web services, we use Create, Accept, Refuse, Defend, Challenge,
Justify, and Attack.

Formal Semantics The formal model M associated to this logic corresponds
exactly to our agent hypergraph defined above. Because of space limit and to
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focus more on the verification issue, which is the main contribution of this paper,
here we only specify the semantics of the argument and commitment operators.
The semantics of CTL*C4 state formulae is as usual (semantics of CTL*). A
path satisfies a state formula if the initial state in the path does so. Along a
path z?, which starts at state s;, ¢ .". @2 holds iff ¢; is true and in the next
state through the same path if ¢; holds then ¢ holds too. Formally (= stands
for material implication):
zt |:M @1 .. ¢g iff ! ‘:M ¢1 and i ):M 1 = P2

A state s; satisfies PC(Ag1, Aga, t, ¢1) iff the commitment is in this state and
there is a path along which the commitment content holds. Formally:

si Ev PC(Agy, Aga,t, 1) iff PC(Agi, Aga,t,¢1) € Vpe(s;) and s; [=ar E¢y

A path 2 satisfies Acty,(Agn, PC(Agy, Aga,t, ¢1)) iff Acty is in the label of
the first transition on this path and in the past! PC(Ag, Aga,t, ¢1) holds along
the same path. Formally:

a' Er Acty,(Agn, PC(Agy, Aga,t, ¢1)) iff s;, Agn A% 5i41 and
x' =y FTPC(Agy, Aga,t, ¢1)

3 Verification

In this section, we will use the PN AW S protocol presented in Section 2.2 to show
how our verification approach works. As discussed earlier, we use the MCMAS
model checker. In MCMAS, multi-agent systems are described by the Interpreted
Systems Programming Language (ISPL), where the system is distinguished into
two types of agents: environment agent, which is used to describe boundary
conditions and infrastructures, and standard agents. ISPL can also be used to
define atomic propositions, action formulae and the specification of properties to
be checked. To automatically use this model checker to verify the communication
protocol of community of web services, we define a mapping between our agent
hypergraph and ISPL and encode our CTL*4 formulae in MCMAS.

3.1 Mapping and Transforming Agent Hypergraph to ISPL

In MCMAS, Each agent is composed by: a set of local states, a set of actions,
a rule (protocol) describing which action can be performed by an agent, and
evolution functions that describe how the local states of the agents evolve based
on their current local states and agents’ actions [9]. The mapping from our agent
hypergraph to ISPL is defined by he following rules:

1. S —to — LocalState: Every state in the agent hypergraph is mapped to the
ISPL environment agent, a local state with the same name.

2. Ag—to— Agent: Every agent in the agent hypergraph is mapped to an ISPL
agent with the same name. A special agent environment should also be added
to the ISPL agent list.

! The past operator F~ is an abreviation and defined as follows: F~ ¢y = trueU ¢
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3. Vpe — to — LocalValue: Vpe is transformed to local values of the agent
that creates the public commitments. The values can be bounded integers,
Booleans or enumerations based on the types of these commitments.

4. Act —to — action/rule: Every action in the agent hypergraph is converted to

an ISPL action list of an agent that can execute the action.

5. 2% _to— evolution: 2% is translated into an ISPL agent evolution list. For

example if we have s;, Agy, Acty s, the Agy,’s evolution in ISPL will be:
state = s(j) if state = s(i) and Action = Act(k);
6. so — to — Init: sg is mapped to an ISPL initial state.

Based on these mapping rules, we use PN AW S as an example to transform
the associated agent hypergraph into ISPL. In communities of web services, the
system includes two types of agents: Master agent and Slave agent. We add
an Environment agent to describe the system boundary conditions and infras-
tructures. Environment agent is a special agent in ISPL system that provides
observable variables that can be accessed by other agents. Every agent starts
with declaration of local variables. The first mapping rule is used to define the
local variables of agent. We declare a state variable to list all possible states in
the system:
Vars: State: {WaitingforCreate, RefuseReceive...}; end Vars
Actions an agents can perform are constructed into Actions section of ISPL file
and follow the 4th mapping rule. We also add “null” action to stand for no
action. In ISPL Protocol section, we give the permitted actions in each state.
Transitions are defined in ISPL Evolution section to show the states change
based on the 5th mapping rule.
Protocol:
state = WaitingforCreate: {Createl};

end Protocol

Evolution:
state = ChallengeReceived if state = DefenceSend
and Slavel.Action=Challenge;

end evolution

Moreover, we declare a set of initial states. The system starts at state waiting
for creating a protocol session with all the counter register reset.

InitStates
(Environment.state = WaitingforCreated) and
(Master.commitments = toCreate) and
(Environment.attackCount = 0) and
(Environment.challengeCount = 0);

end InitStates

3.2 Encoding Specifications in ISPL

ISPL specifies both the model and properties. It supports CTL and ATL. Our
specifications are expressed by CTL*“4, which extends CTL*. Therefore, the
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basic operators are similar to CTL and we can directly use them in ISPL. For
the new operators in CTL*“4, we define rules to convert them into ISPL.

To translate ¢1 ... ¢o formula into ISPL, we need to declare two variables
over the system: al and a2 to stand for ¢; and ¢o. We also need to define
the equivalent formula according to the semantics given in Section 2.3, where X
stands for next and -> stands for implication.

Evaluation
al; a2;
end Evaluation
Formula al and X(al -> a2); end Formula

For the formulae PC(Ag1, Aga, t, ¢1) and Acty(Agn, PC(Ag1, Aga,t, 1)), the

semantics is already encoded in ISPL as Vpe and At are already translated by
the 3rd and 5th rules. We just need to define a local value al in agent Agl’s
definition to present the commitment, then create the action Acty over this
commitment. The moment t is declared in Environment agent because both
agents Agl and Ag2 need to access it at that moment. The code below is an
example of the Create action (i.e. sending an invitation).

Evolution:
Lvar = Ag2Lvar if moment = t and Agl.Action = Create and al;

end evolution
In order to verify the model, we first define some atomic propositions over
the system. Thereby, the propositional formulae, which we need to check by
MCMAS, are defined based on these propositions.

4 Experimental Results

We have checked different properties of the PN AW S protocol. Here are some
examples, where G means globally, F means in the future and A and E are the
universal and existential quantifiers.

1. Termination: PN AW S always terminates.
AG termination
Termination is an atomic proposition for termination state of the proto-
col. Intuitively, this property should hold because with finite states and re-
strained unbound states, a protocol will end.

2. Soundness: The protocol is correct. An example of soundness is: if there is a

challenge, a justification will follow in the future.
AG (challenge -> F justify)

3. Reachability: certain states are reachable through any possible sequence of
transitions, starting from the initial state. For example, if there is a refusal
for an invitation, the protocol will reach defense state.

AG (refusal -> F defense)
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4. Liveness: Liveness means something good will eventually happen. An ex-
ample of liveness is: if there is a negotiation, an acceptance will eventually
follow in the future.

AG (Attack or Chalenge -> EF Accept)

We have implemented the mapping rules and the PN AW S case study sce-
nario along with the specifications in ISPL and verified them with MCMAS.
Our system was running on Windows Vista Home Premium on Inter Core 2
Duo CPU T6400 2.00GHz with 3.0GB memory. Experimental results for the
example of communities of web services are presented in Table 2. The results
clearly show that the state space grows exponentially, but thanks to symbolic
model checking the execution time is low.

Table 2. Experimental Results

Number of Slave Agents 1 2 3
Memory in use (MB) 6.6 7.3 9.0
Reachable states 17 393 2,615
Number of BDD Variables 40 60 80
Number of BDD and ADD nodes 6,863 53,690 151,592
Total number of nodes allocated 22,938 83,722 515,756
Execution time (sec) 0.06 0.34 2.04

5 Conclusion and Future Work

Many research proposals [6,10, 13] have addressed the verification of behavior
specifications in UML. Also, extensive research [2,9,11, 14, 16] has been done on
the verification of multi-agent systems. However, few work focus on these two
techniques together. This paper proposes a fully automated approach to verify
agent-based communities of web services modeled in UML activity diagrams.
We formalized UML activity diagrams using agent hypergraphs and specified
properties using a new logic for agent communication: CTL*¢4. We defined
and implemented the mapping rules for transforming the agent hypergraphs and
CTL*“4 specifications into the ISPL language. Finally, we used MCMAS to
experiment with the PN AW S protocol.

In this work, action formulae are only captured by the transition labels.
Considering the full semantics of different actions in different situations is needed
to check more complicated protocols. Our plan for future work is to extend
CTL*®4 by adding different action formulae and proposing a new OBDD-based
algorithm for the model checking. We also plan to extend MCMAS to be fully
compatible with this new logic. Besides model checking, we are planning to use
Model Driven Architecture (MDA), launched by the Object Management Group
(OMG) in 2001 as a promising software design method, to develop a flexible
platform for agent-based communities of web services. We intent to use model
transformation, which is a process that generates a refined model from a source
model [8]. This process is based on a transformation definition, which is a set
of transformation rules that describe how one or more constructs in the source
language can be transformed into one or more constructs in the target language.
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This process can be achieve automatically, which helps in reducing programming
errors and coding time.
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